Genes associated with unhealthy liver function

A groundbreaking study of nearly 2,400 extremely obese diabetes patients, led by the Translational Genomics Research Institute (TGen), has identified genes associated with unhealthy liver function.

This is believed to be the nation’s first large-scale genome-wide association study in overweight patients with diabetes. The results of the study-Genome-wide analysis identifies evidence for new genetic loci that may play a role in the biological mechanisms of NAFLD and NASH-were presented at the 69th annual meeting of the American Association for the Study of Liver Diseases Nov. 1-5 at the Walter E. Washington Convention Center in Washington, D.C.

The study-Genome-wide analysis identifies evidence for new genetic loci that may play a role in the biological mechanisms of NAFLD and NASH-was selected for presentation from among a record 3,139 submittals from around the world proposed for what also is known as The Liver Meeting 2013.

These genetic factors could help us identify patients who are most at risk of developing non-alcoholic fatty liver disease so severe that they could require liver transplants, “ said Dr. Glenn S. Gerhard, a faculty member of the Geisinger-Geisinger Institute and a co-investigator of the study.

“Our results showed evidence for new genetic loci that may play a role in the biological mechanisms of NAFLD and NASH,” said Dr. Glenn S. Gerhard, a faculty member of the Geisinger-Geisinger Institute and a co-investigator of the study.

“We discovered genes that may help identify those patients most at risk for the types of liver diseases so severe that they could require transplants,” said Dr. Gerhard, Administrative Director for the Institute for Personalized Medicine at Penn State University-Hersey.

Patients included in this study were those with extreme obesity enrolled in a bariatric surgery program.

A groundbreaking study of nearly 2,400 extremely obese diabetes patients, led by the Translational Genomics Research Institute (TGen), has identified genes associated with unhealthy liver function. This is believed to be the nation’s first large-scale genome-wide association study in overweight patients with diabetes. The results of the study-Genome-wide analysis identifies evidence for new genetic loci that may play a role in the biological mechanisms of NAFLD and NASH-were presented at the 69th annual meeting of the American Association for the Study of Liver Diseases Nov. 1-5 at the Walter E. Washington Convention Center in Washington, D.C.

The study-Genome-wide analysis identifies evidence for new genetic loci that may play a role in the biological mechanisms of NAFLD and NASH-was selected for presentation from among a record 3,139 submittals from around the world proposed for what also is known as The Liver Meeting 2013. These genetic factors could help us identify patients who are most at risk of developing non-alcoholic fatty liver disease so severe that they could require liver transplants, “ said Dr. Glenn S. Gerhard, a faculty member of the Geisinger-Geisinger Institute and a co-investigator of the study.

“Our results showed evidence for new genetic loci that may play a role in the biological mechanisms of NAFLD and NASH,” said Dr. Glenn S. Gerhard, a faculty member of the Geisinger-Geisinger Institute and a co-investigator of the study.

“We discovered genes that may help identify those patients most at risk for the types of liver diseases so severe that they could require transplants,” said Dr. Gerhard, Administrative Director for the Institute for Personalized Medicine at Penn State University-Hersey.

Patients included in this study were those with extreme obesity enrolled in a bariatric surgery program.